Managing Databases in MySQL
Creating Database

CREATE DATABASE database_name;
CREATE DATABASE statement will create the database with the given name you specified.

CREATE DATABASE classicmodels;
Showing Databases

SHOW DATABASE statement will show all databases in your database server.

SHOW DATABASES;
EG.
On my database server, the output is :

+--------------------+

| Database |

+--------------------+

| information_schema |

| classicmodels |

| mysql |

+--------------------+

8 rows in set (0.00 sec)

Selecting Database

To select a database which you plan to work with, you use USE statement

USE database_name;
Removing Database

Removing database means you delete the database. All the data and related objects inside the database are permanently deleted and cannot be undone.

DROP DATABASE database_name;
Understanding MySQL Table Types

MySQL supports various of table types or storage engines to allow you to optimize your database. The table types are available in MySQL are:

· ISAM

· MyISAM

· InnoDB

· BerkeleyDB (BDB)

· MERGE

· HEAP

The most important feature to make all the table types above distinction is transaction-safe or not. Only InnoDB and BDB tables are transaction safe and only MyISAM tables support full-text indexing and searching feature. MyISAM is also the default table type when you create table without declaring which storage engine to use.

Working with Database Table - Part I

Creating Tables

To create table we use the CREATE TABLE statement. The usual form of this statement is:

CREATE TABLE [IF NOT EXISTS] table_name(

column_list

) type=table_type

In our classicmodels sample database, to create employees table we can apply the statement above as follows:

CREATE TABLE employees (

 employeeNumber into(11) NOT NULL,

 lastName varchar(50) NOT NULL,

 firstName varchar(50) NOT NULL,

 extension varchar(10) NOT NULL,

 email varchar(100) NOT NULL,

 officeCode varchar(10) NOT NULL,

 reportsTo int(11) default NULL,

 jobTitle varchar(50) NOT NULL,

 PRIMARY KEY (employeeNumber)

);

You specify table name employees after CREATE TABLE statement. Then columns list with its characteristics followed such as data type, size, NOT NULL or not; And finally you can specify the primary key of the table, in this case the primary key is employeeNumber. If the table has more than one primary key, you can seperate them by a comma. For example, the payments table has two primary keys customerNumber and checkNumber, you can create it by execute following query:

CREATE TABLE payments (

 customerNumber int(11) NOT NULL,

 checkNumber varchar(50) NOT NULL,

 paymentDate datetime NOT NULL,

 amount double NOT NULL,

 PRIMARY KEY (customerNumber,checkNumber)

);

Showing and Describing Tables in a Database

In order to show all tables in a database you use SHOW TABLES statment, the server will returns all tables name of the current selected database you work with.

SHOW TABLES

Here is the output of classicmodels database

+-------------------------+

| Tables_in_classicmodels |

+-------------------------+

| customers |

| employees |

| offices |

| orderdetails |

| orders |

| payments |

| productlines |

| products |

+-------------------------+

8 rows in set (0.00 sec)

In some cases, you need to see the table characteristics or table metadata, you can use DESCRIBE statement as follows:

DESCRIBE employees;

for instance, we can describe employees table like this query

DESCRIBE employees;

The output return from the database server:

+----------------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------------+--------------+------+-----+---------+-------+

| employeeNumber | int(11) | NO | PRI | NULL | |

| lastName | varchar(50) | NO | | NULL | |

| firstName | varchar(50) | NO | | NULL | |

| extension | varchar(10) | NO | | NULL | |

| email | varchar(100) | NO | | NULL | |

| officeCode | varchar(10) | NO | | NULL | |

| reportsTo | int(11) | YES | | NULL | |

| jobTitle | varchar(50) | NO | | NULL | |

+----------------+--------------+------+-----+---------+-------+

8 rows in set (0.02 sec)

Altering Table Structures

Beside creating table, MySQL allows you to alter existing table structures with a lot of options. Here are the ALTER TABLE statement:

ALTER [IGNORE] TABLE table_name options[, options...]

options:

 ADD [COLUMN] create_definition [FIRST | AFTER col_name]

 or ADD [COLUMN] (create_definition, create_definition,...)

 or ADD INDEX [index_name] (index_col_name,...)

 or ADD PRIMARY KEY (index_col_name,...)

 or ADD UNIQUE [index_name] (index_col_name,...)

 or ADD FULLTEXT [index_name] (index_col_name,...)

 or ADD [CONSTRAINT symbol] FOREIGN KEY [index_name] (index_col_name,...)

 [reference_definition]

 or ALTER [COLUMN] col_name {SET DEFAULT literal | DROP DEFAULT}

 or CHANGE [COLUMN] old_col_name create_definition

 [FIRST | AFTER column_name]

 or MODIFY [COLUMN] create_definition [FIRST | AFTER col_name]

 or DROP [COLUMN] col_name

 or DROP PRIMARY KEY

 or DROP INDEX index_name

 or DISABLE KEYS

 or ENABLE KEYS

 or RENAME [TO] new_table_name

 or ORDER BY col_name

 or table_options

Most of these option are obvious, we will explain some here:

· The CHANGE and MODIFY are the same, they allow you to change the definition of the column or its position in the table.

· The DROP COLUMN will drop the column of the table permanently, if the table contain data all the data of the column will be lost.

· The DROP PRIMARY KEY and DROP INDEX only remove the primary key or index of the column.

· The DISABLE and ENABLE KEYS turn off and on updating indexes for MyISAM table only.

· The RENAME Clause allows you the change the table name to the new one.

Dropping Tables

To delete table from the database, you can use DROP TABLE statement:

DROP [TEMPORARY] TABLE [IF EXISTS] table_name [, table_name,...]

TEMPORARY keyword is used for dropping temporary tables. MySQL allows you to drop multiple table at once by listing them and separated each by a comma. IF EXISTS is used to prevent you from deleting table which does not exist in the database.

Empty Table's Data

In some cases, you want to delete all table data in a fast way and reset all auto increment columns. MySQL provide you TRUNCATE table statement to do so. The statement is in this form:

TRUNCATE TABLE table_name

There are some points you should remember before using TRUNCATE TABLE statement:

· TRUNCATE TABLE statement drop table and recreate it so it is much faster than DELETE TABLE statement but it is not transaction-safe.

· The number of deleted rows is not return like DELETE TABLE statement.

· ON DELETE triggers are not invoked because TRUNCATE does not use DELETE statement.

Querying Data from MySQL

In order to retrieve data from MySQL database server you use SELECT statement. Here is the simple form of it:

SELECT column_name1,column_name2...

FROM tables

[WHERE conditions]

[GROUP BY group

[HAVING group_conditions]]

[ORDER BY sort_columns]

[LIMIT limits];

The SELECT statement has many option clauses which you can use these or not. If you use, the order has to be appear as shown.

To select all columns in a table you can use (*) notation instead of listing all column name. For example, if you need to query all the columns in offices table just execute this query:

SELECT * FROM employees

Because of the long result so we don't listed here, you can see it on your PC. SELECT statement also allows you to to view some partial data of a table by listing columns' name after the SELECT keyword. For example if you need to view only first name, last name and job title of all employee you can do the following query :

SELECT lastname,firstname,jobtitle

FROM employees

The MySQL database server will return the record set like follows:

+-----------+-----------+----------------------+

| lastname | firstname | jobtitle |

+-----------+-----------+----------------------+

| Murphy | Diane | President |

| Patterson | Mary | VP Sales |

| Firrelli | Jeff | VP Marketing |

| Patterson | William | Sales Manager (APAC) |

| Bondur | Gerard | Sale Manager (EMEA) |

| Bow | Anthony | Sales Manager (NA) |

| Jennings | Leslie | Sales Rep |

| Thompson | Leslie | Sales Rep |

| Firrelli | Julie | Sales Rep |

| Patterson | Steve | Sales Rep |

| Tseng | Foon Yue | Sales Rep |

| Vanauf | George | Sales Rep |

| Bondur | Loui | Sales Rep |

| Hernandez | Gerard | Sales Rep |

| Castillo | Pamela | Sales Rep |

| Bott | Larry | Sales Rep |

| Jones | Barry | Sales Rep |

| Fixter | Andy | Sales Rep |

| Marsh | Peter | Sales Rep |

| King | Tom | Sales Rep |

| Nishi | Mami | Sales Rep |

| Kato | Yoshimi | Sales Rep |

| Gerard | Martin | Sales Rep |

+-----------+-----------+----------------------+

23 rows in set (0.00 sec)

WHERE Clause

WHERE clause enables you to select a particular rows which match its conditions or search criteria. In our example we can find the president of company by doing this query:

SELECT firstname,lastname,email

FROM employees

WHERE jobtitle="president"

And of course MySQL returns the result

+-----------+----------+------------------------------+

| firstname | lastname | email |

+-----------+----------+------------------------------+

| Diane | Murphy | dmurphy@classicmodelcars.com |

+-----------+----------+------------------------------+

1 row in set (0.00 sec)

DISTINCT

With DISTINCT keyword, you can eliminate the duplicated result from SELECT statement. For example, to find how many job title of all employee in employees table, we use DISTINCT keyword in SELECT statement like below:

SELECT DISTINCT jobTitle FROM employees;

And here are all job titles the employee has

+----------------------+

| jobTitle |

+----------------------+

| President |

| VP Sales |

| VP Marketing |

| Sales Manager (APAC) |

| Sale Manager (EMEA) |

| Sales Manager (NA) |

| Sales Rep |

+----------------------+

7 rows in set (0.00 sec)

GROUP BY

If you need to find number of employee who hold each job, you can use GROUP BY clause. GROUP BY clause allows use to retrieve rows in group. Here is the query example:

SELECT count(*), jobTitle

FROM employees

GROUP BY jobTitle;

And here is the result

+----------+----------------------+

| count(*) | jobTitle |

+----------+----------------------+

| 1 | President |

| 1 | Sale Manager (EMEA) |

| 1 | Sales Manager (APAC) |

| 1 | Sales Manager (NA) |

| 17 | Sales Rep |

| 1 | VP Marketing |

| 1 | VP Sales |

+----------+----------------------+

7 rows in set (0.02 sec)

HAVING Clause

HAVING clause usually use with GROUP BY clause to selecting a particular of group. For example:

SELECT count(*), jobTitle

FROM employees

GROUP BY jobTitle

HAVING count(*) = 1

This query select the job in the company for which we have one employee in each job title. HAVING clause select all group which have count(*) equal 1. Here is the output:

+----------+----------------------+

| count(*) | jobTitle |

+----------+----------------------+

| 1 | President |

| 1 | Sale Manager (EMEA) |

| 1 | Sales Manager (APAC) |

| 1 | Sales Manager (NA) |

| 1 | VP Marketing |

| 1 | VP Sales |

+----------+----------------------+

6 rows in set (0.00 sec)

Sorting with ORDER BY

The ORDER BY clause allows you to sort the result set on one or more column in ascending or descending order. To sort the result set in ascending order you use ASC and in descending order you use DESC keywords. By default, the ORDER BY will sort the result set in ascending order. For example, to sort the name of employee on the first name and job title you can execute the following query:

SELECT firstname,lastname, jobtitle

FROM employees

ORDER BY firstname ASC,jobtitle DESC;

+-----------+-----------+----------------------+

| firstname | lastname | jobtitle |

+-----------+-----------+----------------------+

| Andy | Fixter | Sales Rep |

| Anthony | Bow | Sales Manager (NA) |

| Barry | Jones | Sales Rep |

| Diane | Murphy | President |

| Foon Yue | Tseng | Sales Rep |

| George | Vanauf | Sales Rep |

| Gerard | Hernandez | Sales Rep |

| Gerard | Bondur | Sale Manager (EMEA) |

| Jeff | Firrelli | VP Marketing |

| Julie | Firrelli | Sales Rep |

| Larry | Bott | Sales Rep |

| Leslie | Jennings | Sales Rep |

| Leslie | Thompson | Sales Rep |

| Loui | Bondur | Sales Rep |

| Mami | Nishi | Sales Rep |

| Martin | Gerard | Sales Rep |

| Mary | Patterson | VP Sales |

| Pamela | Castillo | Sales Rep |

| Peter | Marsh | Sales Rep |

| Steve | Patterson | Sales Rep |

| Tom | King | Sales Rep |

| William | Patterson | Sales Manager (APAC) |

| Yoshimi | Kato | Sales Rep |

+-----------+-----------+----------------------+

23 rows in set (0.00 sec)

Selecting Data with SQL IN

SQL IN allows you to select values which match any one of a list of values. The usage of SQL IN is as follows:

SELECT column_list

FROM table_name

WHERE column IN ("list_item1","list_item2"…)

The column in WHERE clause does not need to be in column_list you selected, but it has to be a column in the table table_name. If the list has more than one value, each item has to be separated by a comma.

In addition, you can use NOT operator with SQL IN to get values which does not match any value in a list of value.

Let’s practice with several examples of SQL IN.

Suppose if you want to find out all offices which are located in US and France, you can perform the following query:

SELECT officeCode, city, phone

FROM offices

WHERE country = 'USA' OR country = 'France'

In this case, we can use SQL IN instead of the above query:

SELECT officeCode, city, phone

FROM offices

WHERE country IN ('USA','France')

Here is the output

+------------+--------+-----------------+

| officeCode | city | phone |

+------------+--------+-----------------+

| 2 | Boston | +1 215 837 0825 |

| 3 | NYC | +1 212 555 3000 |

| 4 | Paris | +33 14 723 5555 |

| 8 | Boston | +1 215 837 0825 |

+------------+--------+-----------------+

To get all countries which does are not located in USA and France, we can use NOT IN in the where clause as follows:

SELECT officeCode, city, phone

FROM offices

WHERE country NOT IN ('USA','France')

Here is the output of offices which does not in USA and France

+------------+--------+------------------+

| officeCode | city | phone |

+------------+--------+------------------+

| 5 | Tokyo | +81 33 224 5000 |

| 6 | Sydney | +61 2 9264 2451 |

| 7 | London | +44 20 7877 2041 |

+------------+--------+------------------+

SQL IN is used most often in sub-query. For example, if you want to find out all orders in the orders table which have total cost greater than $60000, we can use SQL IN with sub-query.

First to select all the orders which has total cost greater than $60000, you can retrieve it from orderDetails table as follows:

SELECT orderNumber

FROM orderDetails

GROUP BY orderNumber

HAVING SUM (quantityOrdered * priceEach) > 60000

Second you use the sub-query with SQL IN as follows:

SELECT orderNumber,customerNumber,status,shippedDate

FROM orders

WHERE orderNumber IN (

 SELECT orderNumber

 FROM orderDetails

 GROUP BY orderNumber

 HAVING SUM(quantityOrdered * priceEach) > 60000

)

You get all the orders which have total cost greater than $60000

+-------------+----------------+---------+---------------------+

| orderNumber | customerNumber | status | shippedDate |

+-------------+----------------+---------+---------------------+

| 10165 | 148 | Shipped | 2003-12-26 00:00:00 |

| 10287 | 298 | Shipped | 2004-09-01 00:00:00 |

| 10310 | 259 | Shipped | 2004-10-18 00:00:00 |

+-------------+----------------+---------+---------------------+

Retrieving Data in a Range by SQL BETWEEN

SQL BETWEEN allows you to retrieve values within a specific range. The usage of SQL BETWEEN is as follows:

SELECT column_list

 FROM table_name

 WHERE column_1 BETWEEN lower_range AND upper_range

MySQL returns all records in which the column_1 value is in the range of lower_rage and upper_range as well as the values lower_rage and upper_range. The query which is equivalent to SQL BETWEEN to get the same result is

SELECT column_list

 FROM table_name

 WHERE column_1 >= lower_range AND column_1 <= upper_range

Let’s practice with several examples of using SQL BETWEEN to search values in a range.

Suppose we want to find all products which buy price is in a range of 90$ and 100$, we can perform the following query to do so:

SELECT productCode,ProductName,buyPrice

 FROM products

 WHERE buyPrice BETWEEN 90 AND 100

 ORDER BY buyPrice DESC

Here is the output

+-------------+--------------------------------------+----------+

| productCode | ProductName | buyPrice |

+-------------+--------------------------------------+----------+

| S10_1949 | 1952 Alpine Renault 1300 | 98.58 |

| S24_3856 | 1956 Porsche 356A Coupe | 98.3 |

| S12_1108 | 2001 Ferrari Enzo | 95.59 |

| S12_1099 | 1968 Ford Mustang | 95.34 |

| S18_1984 | 1995 Honda Civic | 93.89 |

| S18_4027 | 1970 Triumph Spitfire | 91.92 |

| S10_4698 | 2003 Harley-Davidson Eagle Drag Bike | 91.02 |

+-------------+--------------------------------------+----------+

The output contains all products in the range of 90$ and 100$, and if there is a product with buy price 90$ or 100$, it will be included in the output too.

In order to find all records which are not in a range we use NOT BETWEEN. To find all products that buy price outside the range of 20 and 100, we can operate following query:

SELECT productCode,ProductName,buyPrice

 FROM products

 WHERE buyPrice NOT BETWEEN 20 AND 100

 ORDER BY buyPrice DESC

+-------------+-------------------------------------+----------+

| productCode | ProductName | buyPrice |

+-------------+-------------------------------------+----------+

| S10_4962 | 1962 LanciaA Delta 16V | 103.42 |

| S18_2238 | 1998 Chrysler Plymouth Prowler | 101.51 |

| S24_2972 | 1982 Lamborghini Diablo | 16.24 |

| S24_2840 | 1958 Chevy Corvette Limited Edition | 15.91 |

+-------------+-------------------------------------+----------+

The query above is equivalent to the following query

SELECT productCode,ProductName,buyPrice

FROM products

 WHERE buyPrice < 20 OR buyPrice > 100

 ORDER BY buyPrice DESC

Using SQL LIKE Operator

SQL LIKE allows you to perform pattern matching in your characters column in a database table. SQL LIKE is often used with SELECT statement in WHERE clause. MySQL provides you two wildcard characters for use with LIKE, the percentage % and underscore _.

· Percentage (%) wildcard allows you to match any string of zero or more characters

· Underscore (_) allows you to match any sing character.

Let’s practice with couples of examples which use SQL Like with different wildcard characters.

Suppose you want to search all employees in employees table who have first name starting with character ‘a’, you can do it as follows:

SELECT employeeNumber, lastName, firstName

 FROM employees

 WHERE firstName LIKE 'a%'

+----------------+----------+-----------+

| employeeNumber | lastName | firstName |

+----------------+----------+-----------+

| 1611 | Fixter | Andy |

+----------------+----------+-----------+

1 row in set (0.00 sec)

MySQL scans the whole employees table to find all employees which have first name starting with character ‘a’ and followed by any number of characters.

To search all employees which have last name ended with ‘on’ string you can perform the query as follows:

SELECT employeeNumber, lastName, firstName

 FROM employees

 WHERE lastName LIKE '%on'

+----------------+-----------+-----------+

| employeeNumber | lastName | firstName |

+----------------+-----------+-----------+

| 1088 | Patterson | William |

| 1216 | Patterson | Steve |

+----------------+-----------+-----------+

2 rows in set (0.00 sec)

If you know a searched string is embedded somewhere in a column, you can put the percentage wild card at the beginning and the end of it to find all possibilities. For example, if you want to find all employees which have last name containing ‘on’ string you can execute following query:

SELECT employeeNumber, lastName, firstName

FROM employees

WHERE lastName LIKE '%on%'

+----------------+-----------+-----------+

| employeeNumber | lastName | firstName |

+----------------+-----------+-----------+

| 1088 | Patterson | William |

| 1102 | Bondur | Gerard |

| 1216 | Patterson | Steve |

| 1337 | Bondur | Loui |

| 1504 | Jones | Barry |

+----------------+-----------+-----------+

5 rows in set (0.00 sec)

To search all employees whose name are such as Tom, Tim… You can use underscore wildcard

SELECT employeeNumber, lastName, firstName

FROM employees

WHERE firstName LIKE 'T_m'

+----------------+----------+-----------+

| employeeNumber | lastName | firstName |

+----------------+----------+-----------+

| 1619 | King | Tom |

+----------------+----------+-----------+

1 row in set (0.00 sec)

SQL LIKE allows you to put the NOT keyword to find all strings which are unmatched with a specific pattern. Suppose you want to search all employees whose last name are not starting with ‘B’ you can perform the following query

SELECT employeeNumber, lastName, firstName

FROM employees

WHERE lastName NOT LIKE 'B%'

+----------------+-----------+-----------+

| employeeNumber | lastName | firstName |

+----------------+-----------+-----------+

| 1088 | Patterson | William |

| 1188 | Firrelli | Julie |

| 1216 | Patterson | Steve |

| 1286 | Tseng | Foon Yue |

| 1323 | Vanauf | George |

| 1370 | Hernandez | Gerard |

| 1401 | Castillo | Pamela |

| 1504 | Jones | Barry |

| 1611 | Fixter | Andy |

| 1612 | Marsh | Peter |

| 1619 | King | Tom |

| 1621 | Nishi | Mami |

| 1625 | Kato | Yoshimi |

| 1702 | Gerard | Martin |

+----------------+-----------+-----------+

14 rows in set (0.00 sec)

Be noted that SQL LIKE is not case sensitive so ‘b%’ and ‘B%’ are the same.

What if you want to search for records which have a field starting with a wildcard character? In this case, you can use ESCAPE to shows that the wildcard characters followed it has literal meaning not wildcard meaning. If ESCAPE does not specify explicitly, the escape character in MySQL by default is ‘\’. For example, if you want to find all products which as product code which has _20 embedded on it, you can perform following query

SELECT productCode, productName

FROM products

WHERE productCode LIKE '%_20%'

+-------------+---+

| productCode | productName |

+-------------+---+

| S10_2016 | 1996 Moto Guzzi 1100i |

| S24_2000 | 1960 BSA Gold Star DBD34 |

| S24_2011 | 18th century schooner |

| S24_2022 | 1938 Cadillac V-16 Presidential Limousine |

| S700_2047 | HMS Bounty |

+-------------+---+

5 rows in set (0.00 sec)

SQL LIKE gives you a convenient way to find records which have character columns match specified patterns. Because SQL LIKE scans the whole table to find all the matching records therefore it does not allow database engine to use the index when searching. When the data in the table is big enough, the performance of SQL LIKE will degrade. In some cases you can avoid this problem by using other techniques to achieve the same result as SQL LIKE. For example, if you want to find all employees which have first name starting with a specified string you can use LEFT function in where clause like the following query

SET @str = 'b';

SELECT employeeNumber, lastName, firstName

FROM employees

WHERE LEFT(lastname,length(@str)) = @str;

It returns the same result as the query bellow but it faster because we can leverage the index on the column lastname.

SELECT employeeNumber, lastName, firstName

FROM employees

WHERE lastname LIKE 'b%'

And another technique to achieve all string which end with a specified string by using RIGHT function. Suppose we want to retrieve all employees which have last name ended with ‘on’ string, we can use RIGHT function instead of SQL LIKE as bellow:

SET @str = 'on';

SELECT employeeNumber, lastName, firstName

FROM employees

WHERE RIGHT (lastname,length(@str)) = @str;

+----------------+-----------+-----------+

| employeeNumber | lastName | firstName |

+----------------+-----------+-----------+

| 1088 | Patterson | William |

| 1216 | Patterson | Steve |

+----------------+-----------+-----------+

2 rows in set (0.00 sec)

It returns the same result as the following query

SELECT employeeNumber, lastName, firstName

FROM employees

WHERE lastname LIKE '%on'

SQL UNION allows you to combine two or more result sets from select statements into a single result set. The usage of using SQL UNION is as follows:

SELECT statement

UNION [DISTINCT | ALL]

SELECT statement

UNION [DISTINCT | ALL]

…
The column list of each individual SELECT statement must have the same data type. By default the UNION removes all duplicated rows from the result set even if you don’t explicit using DISTINCT after the UNION keyword. If you use UNION ALL explicitly, the duplicated rows will remain in the result set. Let’s practice with couples of examples which use SQL UNION. Suppose you want to combine customers and employees into one, you just perform the following query:

SELECT customerNumber id, contactLastname name

FROM customers

UNION

SELECT employeeNumber id,firstname name

FROM employees

Here is the excerpt of the output

 id name

------ ---------------

 103 Schmitt

 112 King

 114 Ferguson

 119 Labrune

 121 Bergulfsen

 124 Nelson

 125 Piestrzeniewicz

 128 Keitel

 129 Murphy

 131 Lee

In order to use ORDER BY to sort the result you have to use it after the last SELECT statement. It would be the best to parenthesize all the SELECT statements and place ORDER BY after the last one. Suppose we use the want to sort the combination of employees and customers in the query above we can do as follows:

(SELECT customerNumber id,contactLastname name

FROM customers)

UNION

(SELECT employeeNumber id,firstname name

FROM employees)

ORDER BY name,id

First it orders the result set by name and then by id What if we don’t use alias for each column in the SELECT statement? MySQL uses the column names in the first SELECT statement as the label of the result therefore you can rewrite the query above as follows:

(SELECT customerNumber, contactLastname

FROM customers)

UNION

(SELECT employeeNumber, firstname

FROM employees)

ORDER BY contactLastname, customerNumber

or you can also use the column position in the ORDER BY clause like following query

(SELECT customerNumber, contactLastname

FROM customers)

UNION

(SELECT employeeNumber,firstname

FROM employees)

ORDER BY 2, 1

Learning Advanced Queries: Join and Subqueries

In the previous tutorial, you've learn how to retrieve data from one table by using SELECT statement. But in the real database programming task, you usually does not select data from just one table because of the normalization process (a big table is divided into a subset of smaller tables). So to get the complete data, you need to use SQL JOIN clause in SELECT statement. The normal form of SQL JOIN clause in MySQL is simple follows:

 SELECT column_list FROM table_1

 [INNER | LEFT | RIGHT] table_2 ON conditions_2

 [INNER | LEFT | RIGHT] table_3 ON conditions_3 ...

 WHERE conditions

After SELECT keyword is a list of column name in which you want to retrieve the data. These columns have to be in the tables you select such as table_1, table_2... If the columns' name in those tables are the same, you have to explicit declare the as the form table_name.column_name, otherwise MySQL will returns you an error message to say that the column name you selected is ambiguous. Next you will list the main table and then a list of table you want to join. You can use INNER JOIN, LEFT JOIN or RIGHT JOIN. You can join a table with more than two tables or even with itself. In the JOIN clause you have to declare the join conditions. If all the conditions on each join clause match, MySQL will return the corresponding data.

Using INNER JOIN

INNER JOIN is used to retrieve the data from all tables listed based on condition listed after keyword ON. If the condition is not meet, nothing is returned. For example, see the following tables in our classicmodels sample database. We have employees table and offices table. Two tables are linked together by the column officeCode. To find out who is in which country and state we can use INNER JOIN to join these tables. Here is the SQL code:

SELECT employees.firstname,

 employees.lastname,

 offices.country,

 offices.state

FROM employees

INNER JOIN offices

 ON offices.officeCode = employees.officeCode

And we will get the data like this:

+-----------+-----------+-----------+------------+

| firstname | lastname | country | state |

+-----------+-----------+-----------+------------+

| Diane | Murphy | USA | CA |

| Mary | Patterson | USA | CA |

| Jeff | Firrelli | USA | CA |

| William | Patterson | Australia | NULL |

| Gerard | Bondur | France | NULL |

| Anthony | Bow | USA | CA |

| Leslie | Jennings | USA | CA |

| Leslie | Thompson | USA | CA |

| Julie | Firrelli | USA | MA |

| Steve | Patterson | USA | MA |

| Foon Yue | Tseng | USA | NY |

| George | Vanauf | USA | NY |

| Loui | Bondur | France | NULL |

| Gerard | Hernandez | France | NULL |

| Pamela | Castillo | France | NULL |

| Larry | Bott | UK | NULL |

| Barry | Jones | UK | NULL |

| Andy | Fixter | Australia | NULL |

| Peter | Marsh | Australia | NULL |

| Tom | King | Australia | NULL |

| Mami | Nishi | Japan | Chiyoda-Ku |

| Yoshimi | Kato | Japan | Chiyoda-Ku |

| Martin | Gerard | France | NULL |

+-----------+-----------+-----------+------------+

23 rows in set (0.02 sec)

If you want to find only employees in USA, just execute this query:

SELECT e.firstname,

 e.lastname,

 state

FROM employees e

INNER JOIN offices p

 ON o.officeCode = e.officeCode AND country = 'USA'

Here is the data back

+-----------+-----------+-------+

| firstname | lastname | state |

+-----------+-----------+-------+

| Diane | Murphy | CA |

| Mary | Patterson | CA |

| Jeff | Firrelli | CA |

| Anthony | Bow | CA |

| Leslie | Jennings | CA |

| Leslie | Thompson | CA |

| Julie | Firrelli | MA |

| Steve | Patterson | MA |

| Foon Yue | Tseng | NY |

| George | Vanauf | NY |

+-----------+-----------+-------+

10 rows in set (0.00 sec)

Using LEFT and RIGHT JOIN

LEFT JOIN can be used when you want to retrieve the data from the main table (table1) even if there is no match in other tables (table_2, table_3....). While RIGHT JOIN is used to retrieve the data the from all other tables (table_2, table_3...) even if there is no match in the main table. As an example, in our classicalmodels sample database, when the company want to establish a new office, the SQL script to insert a new office to the databse as follows:

INSERT INTO classicmodels.offices

(officeCode,

 city,

 phone,

 addressLine1,

 addressLine2,

 state,

 country,

 postalCode,

 territory

)

VALUES ('8',

 'Boston',

 '+1 215 837 0825',

 '1550 dummy street',

 'dummy address',

'MA',

'USA',

'02107',

'NA'

)

At this time, the company hasn't any hire new employee yet so the new office does not have any employee. If we want to know employee who belongs to which office and all the offices of the company, we can use RIGHT JOIN as follows:

 SELECT firstname,

 lastname,

 addressLine1

 FROM employees e

 RIGHT JOIN offices o ON o.officeCode = e.officeCode

+-----------+-----------+--------------------------+

| firstname | lastname | addressLine1 |

+-----------+-----------+--------------------------+

| Mary | Patterson | 100 Market Street |

| Diane | Murphy | 100 Market Street |

| Jeff | Firrelli | 100 Market Street |

| Anthony | Bow | 100 Market Street |

| Leslie | Jennings | 100 Market Street |

| Leslie | Thompson | 100 Market Street |

| Julie | Firrelli | 1550 Court Place |

| Steve | Patterson | 1550 Court Place |

| Foon Yue | Tseng | 523 East 53rd Street |

| George | Vanauf | 523 East 53rd Street |

| Gerard | Bondur | 43 Rue Jouffroy D'abbans |

| Loui | Bondur | 43 Rue Jouffroy D'abbans |

| Gerard | Hernandez | 43 Rue Jouffroy D'abbans |

| Pamela | Castillo | 43 Rue Jouffroy D'abbans |

| Martin | Gerard | 43 Rue Jouffroy D'abbans |

| Mami | Nishi | 4-1 Kioicho |

| Yoshimi | Kato | 4-1 Kioicho |

| William | Patterson | 5-11 Wentworth Avenue |

| Andy | Fixter | 5-11 Wentworth Avenue |

| Peter | Marsh | 5-11 Wentworth Avenue |

| Tom | King | 5-11 Wentworth Avenue |

| Larry | Bott | 25 Old Broad Street |

| Barry | Jones | 25 Old Broad Street |

| NULL | NULL | 1550 dummy street |

+-----------+-----------+--------------------------+

24 rows in set (0.00 sec)

As you can see, the RIGHT JOIN get the all the data from second table (offices) and data from the first table even the condition does not match.

Joining a Table to Itself or Self joins

You can also using JOIN clause to join table to itself. Consider the following situation to our sample databse, we want to know who has to report to whom in organization structure. Here is the SQL script:

SELECT concat(e.firstname,',',e.lastname) AS employee,

 concat(m.firstname,',',m.lastname) AS manager

FROM employees AS m

INNER JOIN employees AS e ON m.employeeNumber = e.reportsTo

ORDER BY employee

+------------------+-------------------+

| employee | manager |

+------------------+-------------------+

| Andy,Fixter | William,Patterson |

| Barry,Jones | Gerard,Bondur |

| Foon Yue,Tseng | Anthony,Bow |

| George,Vanauf | Anthony,Bow |

| Gerard,Hernandez | Gerard,Bondur |

| Jeff,Firrelli | Diane,Murphy |

| Julie,Firrelli | Anthony,Bow |

| Larry,Bott | Gerard,Bondur |

| Leslie,Jennings | Anthony,Bow |

| Leslie,Thompson | Anthony,Bow |

| Loui,Bondur | Gerard,Bondur |

| Martin,Gerard | Gerard,Bondur |

| Mary,Patterson | Diane,Murphy |

| Pamela,Castillo | Gerard,Bondur |

| Peter,Marsh | William,Patterson |

| Steve,Patterson | Anthony,Bow |

| Tom,King | William,Patterson |

| Yoshimi,Kato | Mami,Nishi |

+------------------+-------------------+

Aggregate Functions in MySQL

In some cases, the information we need is not actually stored in the database but we can retrieve it by computing in some ways from stored data. For example, we have OrderDetails table to store order data, we don't know total of money of all selling products when we look at the table. In order to do so, we can use aggregate functions. By definition, aggregate functions allow us to perform a calculation on a set of records and return a single returned value. Aggregate functions ignore null value when performing calculation except COUNT function. Aggregate functions are often used with GROUP BY clause of SELECT statement. Here are aggregate functions which MySQL supports:

SUM Function

SUM function returns the sum of all values in an expression.

Let's practice with OrderDetails table by following examples:

To get the total money for each selling product we just use the SUM function and group by product. Here is the query:

SELECT productCode,sum(priceEach * quantityOrdered) total

FROM orderdetails

GROUP by productCode

productCode total

----------- ---------

S10_1678 90157.77

S10_1949 190017.96

S10_2016 109998.82

S10_4698 170686

S10_4757 127924.32

S10_4962 123123.01

S12_1099 161531.48

To see the result more details, we can join the OrderDetails table with Product table.

SELECT P.productCode,

 P.productName,

 SUM(priceEach * quantityOrdered) total

FROM orderdetails O

INNER JOIN products P ON O.productCode = P.productCode

GROUP by productCode

ORDER BY total

productCode productName total

----------- --- ---------

S24_1937 1939 Chevrolet Deluxe Coupe 28052.94

S24_3969 1936 Mercedes Benz 500k Roadster 29763.39

S24_2972 1982 Lamborghini Diablo 30972.87

S24_2840 1958 Chevy Corvette Limited Edition 31627.96

S32_2206 1982 Ducati 996 R 33268.76

S24_2022 1938 Cadillac V-16 Presidential Limousine 38449.09

S50_1341 1930 Buick Marquette Phaeton 41599.24

S24_1628 1966 Shelby Cobra 427 S/C 42015.54

S72_1253 Boeing X-32A JSF 42692.53

AVG Function

AVG is used to calculate average value of an expression. It ignores NULL values.

AVG(expression)

We can use AVG function to calculate the average price of all products buy executing the following query.

SELECT AVG(buyPrice) average_buy_price

FROM Products

Here is the result

average_buy_price

 54.395181818182

MAX and MIN Function

MAX function returns the maximum and MIN function returns the minimum value of the set of values in expression.

MAX(expression)

MIN(expression)

As an example, we can use MIN and MAX function to retrieve the highest and lowest price product as follows:

SELECT MAX(buyPrice) highest_price,

 MIN(buyPrice) lowest_price

FROM Products

You will get the result

highest_price lowest_price

------------- ------------

 103.42 15.91

COUNT Function

COUNT function returns the count of the items in expression. We can use COUNT function to count how many products we have as follows:

SELECT COUNT(*) AS Total

FROM products

Total

 110

For more information on count function check it out here

In this tutorial, you will learn how to insert data into database tables by using SQL INSERT statement.

INSERT Statement

INSERT statement allows you to insert one or more rows to the table. In MySQL, the INSERT statement form is listed as follows:

INSERT [LOW_PRIORITY | DELAYED] [IGNORE]

 [INTO] table_name [(column_name,...)]

 VALUES ((expression | DEFAULT),...),(...),...

 [ON DUPLICATE KEY UPDATE column_name=expression, ...]

INSERT [LOW_PRIORITY | DELAYED] [IGNORE]

 [INTO] table_name [(column_name,...)]

 SELECT statement

INSERT [LOW_PRIORITY | DELAYED] [IGNORE]

[INTO] table_name

SET column_name=(expression | DEFAULT), ...

[ON DUPLICATE KEY UPDATE column_name=expression, ...]

As you can see INTO in the INSERT statement is optional. In the first form, you insert a new data row into an existing table by specifying the column name and data for each. As an example to insert a new office to the offices table in the sample database you can do as follows:

INSERT INTO classicmodels.offices

(officeCode,

city,

phone,

addressLine1,

addressLine2,

state,

country,

postalCode,

territory

)

VALUES

('8',

'Boston',

'+1 215 837 0825',

'1550 dummy street',

'dummy address',

'MA',

'USA',

'02107',

'NA'

)

In the second form, instead of providing explicit data, you select it from other table by using SELECT statement. This form allows you to copy some or some part of data from other table to the inserted table. As an example, we can create a temporary table and insert all offices which locate in US into that one by using this query:

 INSERT INTO temp_table

 SELECT * FROM offices WHERE country = 'US'

The third form enables you to specify the column you want to insert the data. For example, we have the query like this:

 INSERT INTO productlines

 SET productLine = 'Luxury Cars'

It means we only insert the data into productLine column in productLines table.

Updating Data in Database Tables

SQL UPDATE statement is used to update existing data in a data table. It can be used to change values of single row, group of rows or even all rows in a table. In MySQL, the SQL UPDATE statement form is as follows:

 UPDATE [LOW_ PRIORITY] [IGNORE] table_name [, table_name...]

 SET column_name1=expr1

 [, column_name2=expr2 ...]

[WHERE condition]

The UPDATE keyword is followed by the name of a table you want to change data. In MySQL, you can change the data of many tables at a time. If an UPDATE statement violates an integrity constraint, MySQL does not perform the update and it will return an error message.

The SET clause determines the column(s) and the changed values. The changed values could be a constant value expression or even a subquery.

WHERE clause determines which rows of the tables will be updated. It is an optional part of SQL UPDATE statement. If WHERE clause is ignored, all rows in the tables will be updated. In some cases, you should take care about unexpected situation when working with SQL UPDATE statement. Sometime, you want to change just one row of a table but you forget WHERE clause so you accidentally update the whole table.

LOW_ PRIORITY keyword is used to delay the execution until no other client applications reading data from the table.

IGNORE keyword is used to execute the update even error(s) can be occurred during execution. Errors could be duplicated value on unique column, or new data does not match with the column data type. In the first situation data are not updated and in the second one MySQL try to convert the data into closest valid values.

Let's practice with SQL UPDATE statement in our sample database. In employees table, if you want to update the email of Mary Patterson with employeeNumber 1 with the new email as mary-patterso@classicmodelcars.com, you can execute this query:

Before updating

 SELECT firstname,

 lastname,

 email

 FROM employees

 WHERE employeeNumber = 1

+-----------+-----------+--------------------------------+

| lastname | firstname | email |

+-----------+-----------+--------------------------------+

| Patterson | Mary | mpatterso@classicmodelcars.com |

+-----------+-----------+--------------------------------+

1 row in set (0.02 sec)

Update her email to the new email as mary-patterso@classicmodelcars.com

 UPDATE employees

 SET email = 'mary-patterso@classicmodelcars.com'

 WHERE employeeNumber = 1

Execute the select query above again; you will see the email change to

+-----------+-----------+------------------------------------+

| lastname | firstname | email |

+-----------+-----------+------------------------------------+

| Patterson | Mary | mary-patterso@classicmodelcars.com |

+-----------+-----------+------------------------------------+

1 row in set (0.00 sec)

Deleting Data from Datatable Tables

To remove a data row or all rows from a table you can use SQL DELETE statement. The syntax of SQL DELETE statement in MySQL is as follows:

 DELETE [LOW_PRIORITY] [QUICK]

 FROM table_name

[WHERE conditions] [ORDER BY ...] [LIMIT rows]

 DELETE [LOW_PRIORITY] [QUICK]

 table_name[.*] [, table_name[.*] ...]

 FROM table-references

 [WHERE where_definition]

 DELETE [LOW_PRIORITY] [QUICK]

 FROM table_name[.*] [, table_name[.*] ...]

 USING table-references

 [WHERE where_definition]

In the first from of DELETE statement, followed the DELETE FROM is the table name you want to delete data. WHERE clause specifies which rows to remove. If the WHERE clause is ignored in the DELETE statement, all rows from table is removed.

The second form of DELETE statement, MySQL allows us to delete row(s) from multiple tables with references to other table.

The third form of DELETE statement is quite similar to the second form except that instead of FROM keyword it uses USING keyword.

Let's have some example of using SQL DELETE statement with the sample database. It is recommended that you make a copy of employee table before practice with delete statement. If you want to delete all employees in an office with officeNumber is 4, just execute this query:

 DELETE FROM employees

 WHERE officeCode = 4

To delete all employees, just ignore the WHERE clause:

 DELETE FROM employees

It will remove all rows from employees table.

If you want to remove all employees, in employees table, who work in office with the officeCode is 1 and also the office, just use the second form of DELETE statement:

 DELETE employees,offices

 FROM employees,offices

 WHERE employees.officeCode = offices.officeCode AND

 offices.officeCode = 1

You can of course achieve the same above result by using the third form of DELETE statement

 DELETE FROM employees,offices

 USING employees,offices

 WHERE employees.officeCode = offices.officeCode AND

 offices.officeCode = 1

Maintaining Database Tables

MySQL provides a bunch of statements to allow you to maintain database table more efficiently. Those statements enable you to analyze, optimize, check, and repair the database table. Here you will learn them all together with examples.

Analyze table statement

Basically analyze table statement allow you to update cardinality of an index column. By updating cardinality, you can retrieve the database faster by utilizing all index features of database tables.

You will work with the employees and offices table in our sample database. Let’s follow the example bellow to understand more how analyze table statement works.

We can get the indexes information from employees table by executing the show index statement as follows:

SHOW INDEX FROM employees

MySQL gives you quite a lot of information about index in the employee table including cardinality; in this case the cardinality is 23.

Now we create a new index in the officeCode column to allow us to retrieve office and employee information by using join statement faster.

ALTER TABLE employees

ADD INDEX employee_offices (officeCode)

At this time the cardinality of the index is not updated, we can see this by performing the show index statement on employees table again.

SHOW INDEX FROM employees

The cardinality now is NULL.

So the cardinality of index is not updated automatically when index created and a new record is inserted to the table. In this case, we can use analyze table statement to make an update on cardinality of the index column. By executing the following query:

ANALYZE TABLE employees

And perform the show index statement on the table employees again you can see that the cardinality of indexed column employeeNumber and officeCode are updated.

Optimize table statement

While working with the database, you do a lot of changes such as insert, update and delete data in the database tables therefore it causes the physical of database table fragmented. So the performance of database server is also degraded. MySQL provides you optimize table statement to allow you to optimize the database table to avoid this problem by defragmenting the table in physical level. The optimize table statement is as follows:

OPTIMIZE TABLE table_name

With this optimize table statement, you should run it often with the tables which updated frequently.

Suppose you want to optimize the employees table to make it defragmented, you can perform the following query:

OPTIMIZE TABLE employees

Here is the output

Table Op Msg_type Msg_text

----------------------- -------- -------- --------

classicmodels.employees optimize status OK

Check table statement

Something wrong can happen to the database server such as server turn off unexpectedly, error while writing data to the hard disk and so on… all of these situations could make the database operate incorrectly and for the worst thing it can be crashed. MySQL supports you to check database table by using check table statement. Here is the syntax:

CHECK TABLE table_name

The check table statements above check both table and correspondent indexes. For example, you can you check table statement to check the table employees as follows:

CHECK TABLE employees

And here is the output

Table Op Msg_type Msg_text

----------------------- ------ -------- --------

classicmodels.employees check status OK

Check table statement only detect problems in a database table but it does not repair them. In order to do so you can you repair table statement.

Repair table statement

Repair table statement allows you to repair some errors occurred in database tables. MySQL does not guarantee that this statement can repair all errors which your database may have. The repair table statement can be written as follows:

REPAIR TABLE table_name

Suppose you have some errors in the employees table and need to fix, you can use repair table statement by performing this query:

REPAIR TABLE employees

MySQL will return what it has done with the table and the table is repaired or not. Here is the output you always want to see in such cases:

Table Op Msg_type Msg_text

----------------------- ------ -------- --------

classicmodels.employees repair status OK

SQL Concatenate Functions in MySQL

In this tutorial, you will learn various ways to concatenate two or more string together by using concat function which is provided by MySQL.

Almost RMDMSs support us to concatenate two or more strings together by using different implementations. MS SQL server us operator plus (+) to concatenate strings. Oracle only allows you to concatenate two strings with concat function or operator ||. MySQL supports a more flexible way by enabling us to concatenate more than two strings or even concatenate strings with predefined separator. Let's start with each concatenate function.

Concat Function

CONCAT(str1,str2,...)

The concat function is used to concatenate two or more string and returns concatenating string. If the arguments are numeric, they will be converted to strings before concatenating. If any of argument in the argument list is NULL, the concat function will return NULL.

Here are several examples to demonstrate the concat function. We will use the sample database to practice.

In order to display the first 5 full name of contacts of the customers we use concat function to concatenate the first name and last name and a separator between them. Here is the query:

 SELECT CONCAT(contactLastname,', ',contactFirstname) fullname

 FROM customers

 LIMIT 5

The output result is

fullname

Schmitt, Carine

King, Jean

Ferguson, Peter

Labrune, Janine

Bergulfsen, Jonas

Concat with Separator Function

MySQL also supports concat_ws function which allows us to concatenate two or more than two strings with a predefined separator. The syntax of the concat_ws function is:

 CONCAT_WS(seperator,str1,str2,...)

The first parameter is the predefined separator you specified and the others are the string you want to concatenate. the result is the concatenating string with separator between each. For example, you can achieve the same result in the above example by using concat_ws function instead of concat function.

 SELECT CONCAT_WS(', ',contactLastname,contactFirstname) fullname

 FROM customers

 LIMIT 5

Here is another example of using concat_ws to get address format of customers.

 SELECT CONCAT_WS(char(13),

CONCAT_WS(' ',contactLastname,contactFirstname),

addressLine1,

addressLine2,

CONCAT_WS(' ',postalCode,city),

country,

CONCAT_WS(char(13),'')

) AS Customer_Address

 FROM customers

 LIMIT 2

Here is the output result

Customer_Address

Schmitt Carine

54, rue Royale

44000 Nantes France

King Jean

8489 Strong St.

83030 Las Vegas

USA

